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Summary. In a recent paper Deal has postulated a new dynamical equation for 
quantum mechanical phase-space distribution functions. We analyze the new 
equation and show that it may be related to the traditional standard and 
antistandard phase-space representations of quantum mechanics. A brief review 
of  these and other representations is also given. 
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1. Introduction 

In a recent paper on phase-space dynamics and quantum mechanics [1], Deal 
makes the suggestion that there is no need to invoke any of  the usual postu- 
lates of  quantum mechanics if one bases the description of a physical system on 
a phase-space distribution function, @(q,p, t), with a postulated dynamical 
equation for the distribution. For  an n-dimensional system with a classical 
Hamiltonian H(p, q, t) the dynamical equation for ~ (q ,p ,  t) is postulated to 
be: 

~(q,p,t+at)=h-nffdqodpoe'S/~(qo, Po, t)* 

where 6t is small and: 

S = - A H  6t + A q .  Ap 

with 

A H  = H(p, qo, t) - H(po, q, t); Aq = q - qo; 

The distribution function is assumed to be normalized: 

(1) 

(2) 

ff dqdp  ~(q ,p ,  t) = 1 (4) 

~p --p -po. (3) 
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and the average value at time t of any physically observable property F(q, p) is 
equal to: 

F = f f dq dp F(q, p)~(q, p, t). (5) 

In the limit 6t---, 0, Eq. (1) yields the identity: 

~(q, p, t) = h -n ~ J'dqo dpo eiAq'Ap/h~(qo, P0, t)* (6) 

i 

and by taking an infinitesimal time interval 6t ~ dt one gets: 

ih ~ N(q, p, 0 = h -n dqo dpo A H e i~"~'/hN(q o, Po, 0 *. (7) 

Deal shows that these equations lead to (1) solutions of the form: 

~(q,p, t) = h-n/2O(q, t)*a(p, t)e eqp/~ (8) 

where if(q, t) and a(p, t) are related as Fourier transforms, and (2) the time- 
dependent Schr6dinger equation. 

In the present paper we relate the equations suggested by Deal to the 
traditional phase-space formulation of quantum mechanics, in its so-called 
standard and antistandard versions. It is a distinguishing feature of the tradi- 
tional phase-space representations that they treat states and transitions on an 
equal footing. Their dynamical equations will accordingly hold for both states 
and transitions. In accordance with this, we shall show that Deal's equations 
hold, not only for states, but also for certain combinations of transitions. They 
do not, however, hold for general transitions. 

To create a background for our discussion we begin by presenting some of 
the main features of the traditional phase-space representations of quantum 
mechanics in the following section. Section 3 is devoted to a discussion of Eqs. 
(6) and (7) and their extensions. Finally, Sect. 4 contains ou r  conclusions. 

For simplicity of notation, we consider only one-dimensional systems 
throughout, the extension to several dimensions being straightforward. 

2. The traditional phase-space formulation of quantum mechanics 

Let [q/(t)) be a normalized state vector in the Hilbert space associated with our 
system, and let: 

O(q, t) = (q [O(t)) (9) 

and 

q~(p, t) = (p[~k(t)) (10) 

be the corresponding position and momentum wave functions, in the notation of 
Dirac [2]. They are assumed to be normalized: 

f dq t~(q, t)*~k(q, t) = ['dp (a(p, t)*(9(p, t) = (11) 1 
d 
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and are connected by a Fourier transformation (see, e.g. [3]): 

O(q, t) = dp ~)(p, t) e ipq/h (12) 

q~(p , t )=~2~fdq t~(q , t ) e - ipq /~  (13) 

all integrations being from - ~ to oo. Then the quantity $(q, t)*~,(q, t) measures 
the probability density in position space and ~b(p, t)*~b(p, t) the probability 
density in momentum space, at time t. We may also consider the more general 
quantities $i(q, t)*t~j(q, t) and 4~i(P, t)*$j(p, t) which are probability densities 
when i and j refer to the same state (i = j ) ,  and transition densities when i and 
j refer to different states (i # j ) .  

Now, let f(O, z) be any well behaved function for which: 

f(O, z) =f(O, 0) = 1. (14) 

Then each such function defines a phase-space representation [4]. Thus: 

fs(O, r) = e -;~°'/2 (15) 

and 

fa( O, z) = e ih°~/2 (16) 

lead to the standard and antistandard representations, respectively [5], and the 
function: 

fw(o, z) = 1 (17) 

gives the Weyl-Wigner  representation [6-9]. The latter is often considered to be 
the canonical phase-space representation because of its conceptually appealing 
properties [10-12]. The various representations are, however, equivalent and 
lead to the same physical predictions. 

The properties of the representations characterized by Eqs. (15)-(17)  are 
summarized in Table 1. In the following we give the general relations from which 
these properties may be derived. 

For each representation, and for any pair of  states, 1~9~) and 10i), we define 
the distribution function by: 

l f f f  _iOqei,P ~ij(q,P, t) =-4-~ 2 dudOdz e ei°uf(O, z)Oi(u -½hz, t)*Oj(u +½h, t). 

(18) 

With f (0 ,  z) as given by Eqs. (15)-(17)  it reduces to the expressions ~ ,  ~ .  and 
~ w  given in the third column of Table 1 (with the time dependence suppressed). 
The marginal densities are: 

f dp ~o(q, P, t) = ~(q,  t)*~j(q, t) (19) 

and 

f dp ~o(q,P, t) = Oi(P, t)*~j(p, t). (20) 
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Table 1. Review of some phase-space representations 
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Representation f (  O, z) ~ ij(q, P) Operator corresponding to qnpm 

Standard e -iho¢/2 

Antistandard e ~o~/2 

Weyl-Wigner 1 

~ ~k i (q)* ~j (p) eiPqlti 

~ (ai(p)*~kj(q) e -ipq/h 

x 6(q + ½hz) e -iw 

= l  f doOi(P + ½hO)* 

× ~s(P - ½hO) e '°q 

~n ffm 

P'~O_" 

1 n I n \  O ~ p m O ~ _  ~ 

1 m i / m h  " s ~ n ^ m - - s  Q " 

Generator of a(q, p) corresponding a(q, p) corresponding 
twisted product to operator A to (21rh)- l lOj)(4/[ 

8 
- ih - -  - -  - ~ ( q ,  p )  exp(  Opl Oq2 ) f dq' (qlAlq q') e -'pq'/~ 

exp (ih ~q~ ~2  ) fdq, (q+q'[Aiq)e-iPq'/~ @~(q,p) 

Fih(o e a 0) ;  f exp i - -  • - -- dq' (q + ½q'l Alq - ½q') e-'p¢/h ~ f ( q ,  p) 
L 2 \Oql Op2 Op~ Oqz 

This is easily verified by noting that: 

f dy = 2~6(x -y) .  eiXy 

Next we construct, for each representation, a one-to-one 
between operators in Hilbert space and functions in phase 
the operator A and the function a(q, p) is a corresponding pair, and: 

a(q ,p )=f fdOd~(O,~)e  i(°q+'e) 

we take .4 to be: 

d=ffaod f(O,z) (O,r)e 
l f i l l  = 4/r2 dq dp dO dzf(O, z)a(q, p) e--i(Oq+v) e i(°O+~Pb 

(21) 

correspondence 
space. Thus, if 

(23) 

(22) 
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where 0 and/~ are the usual position and momentum operators satisfying the 
commutation relation: 

[Q, P'] = ih. (24) 

We note that this commutation relation implies that: 
e ~(°0+~ = e i0~/2 e i°o e ~ = e--iOzh/2 e~O~ ei~O (25) 

as a special case of the relation: 

e ~ e a = e ~ +a+½t~'al (26) 

which holds when [4,/~] commutes with both A and/~ (see, e.g. [13]). 
With the definitions given by Eqs. (18) and (23) we ensure that the following 

result holds in each representation: 

f f dqdpa(q,p) o.(q,p,t). (27) 

This is one of the central relations in the phase-space formulation of quantum 
mechanics. For i = j  it includes Eq. (5). 

To proceed, let am (q) and a2(p) be arbitrary functions of q and p respectively. 
It then follows, by manipulating Eq. (23), that the corresponding operators are 
simply a I (Q") and a2(P~, for all f(0,  z). For more complicated functions the result 
depends upon the form off (0 ,  ~). As an important example we list in the fourth 
column of Table 1 the operator equivalent of the phase-space function q"p", in 
each of the representations discussed here. Note that it is only for the Weyl- 
Wigner representation that the corresponding operator is Hermitian. In genial ,  
a real phase-space function a(q,p) corresponds to a Hermitian operator A if 
and only if f ( - 0 ,  -~ )  =f(O, "c)*. 

The fifth column of Table 1 gives the generators of the so-called twisted 
product. Let, for instance, aS(q.p) and bS(q,p) be the phase-space functions 
corresponding to the operators A and B respectively in the standard representa- 
tion. Then the phase-space function cS(q,p) corresponding to the operator 

= AB in the same representation is: 

c~(q, p) = exp ( -  ih ~ J-~22) a~(q, p)b~(q, p). (28) 

Here, the subscript 1 on a differential operator indicates that this operator acts 
only on the first function in the product a~(q,p)b~(q,p). Similarly, the subscript 
2 is used with operators which only act on the second function in the product. 

The sixth column of the table shows how the phase-space function corre- 
sponding to an arbitrary operator A may be derived from the position-space 
representation <qlAIq'> of the operator. The expressions listed are readily 
derived from Eq. (23) by noting that: 

ei°O[q ) = ei°q[q ~ (29) 

and 

ei~p[q) = ]q - zh ). (30) 

The expressions of column 6 allow us to derive the phase-space function 
corresponding to the operator: 

1 
Q°(t) = 2 ~  [ffj(t))(ff~(t)[. (31) 
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The result is given in the last column of the table. It shows that this function is 
nothing but the distribution function ~o(q,P) of Eq. (18), but with the impor- 
tant modification that the standard and antistandard distribution functions are 
interchanged. 

We have now introduced the most fundamental relations of the phase-space 
formulation of quantum mechanics and can turn to a discussion of the time 
dependence of the distribution function ~g(q, p). 

3. The dynamical equation for the distribution function 

Let/t(Q,/3, t) be the Hamiltonian for our quantum system, and let I~(t)> be any 
state vector. Its time dependence is given by the time-dependent Schr6dinger 
equation: 

ih ~ kb(t)) =/~]~(t)).  (32) 

To determine alOt ~a(q, p, t) we may differentiate the explicit expressions in the 
third column of Table 1 with respect to t, and then insert the position or 
momentum representation of Eq. (32). It is, however, easier and more instructive 
to start from the equation: 

ih ~ ~u(t) = I~ij(t) -- ~ij(t)11 (33) 

obtained by applying Eq. (32) to the expression (31) for O0.(t), and then construct 
the phase-space equivalent of this equation by means of columns 5 and 7 in 
Table 1. 

We get, for instance, by working in the Weyl-Wigner representation: 

[ h ( O  ~ ~ S q)]HW(q,p , t )~W(q,p , t )  (34) ih~t~f(q, p ' t ) = 2 i s i n  ~ ~q~dp2 ~P, 2 

where HW(q,p, t) is the Weyl-Wigner phase-space Hamiltonian. In most cases 
of practical interest/q(Q,/3, t) is the sum of a kinetic and potential energy term, 
and hence H W(q, p, t) = H~(q, p, t) = Ha(q, p, t) = H(q, p, t), where H(q, p, t) is 
obtained by replacing the operators Q and /3 in the quantum mechanical 
Hamiltonian by q and p. In any case the phase-space Hamiltonians can 
be obtained by using the information in column 4 (and perhaps column 5) of 
Table 1. 

To obtain the dynamical equation for N~.(q, p, t) we must, according to the 
last column of Table 1, work in the antistandard representation. We get: 

ih ~ ~.(q, p, t) exp 

(35) 

A distribution function Nu(q, P, t) describes a state when i = j  and a transition 
when i ¢ j .  Hence, Eqs. (34) and (35) confirm the statement made in the 
Introduction, that the dynamical equations are the same for states and transi- 
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tions. We see, in fact, that they are satisfied by any function of the type: 

~(q,p,  t) = ~. ~ Cu~u(q,p, t) (36) 
i j 

with arbitrary coefficients. 
Equations (34) and (35) may be used as they stand, but in order to make 

contact with Deal's equations we shall now transform Eq. (35) into an integral 
equation. To this end we take the expression for ~ ( q , p ,  t) from Table 1, i.e.: 

~ ( q ,  p, t) = ~-- -~  ~ki(q, t)*~j(p, t) e ipq/h (37) 

and replace ~i (q, t) and ~bj (p, t) by their Fourier transforms as defined by Eqs. 
(11) and (12). Thus we get: 

1 I f  ~ ( q , p ,  t) = ~ dqo dpo ~(qo ,Po,  t) e i(q-q°)(p-p°)/h (38) 

where 

~ ( q ,  p, t) = N / ~  h ~b~. (p, t) *ffj (q, t) e-~Pq/h (39) 

as in Table 1. In a notation similar to that of Eq. (3) we may also write: 

l ff ~;.(q,p, t) = ~ h  aq°dp°"iaq~P/h~at"~ ~ijt~o, ~,o" , t) (40) 

and, similarly, for any function of the type (36): 

a;f  NS(q, p, t) = ~ dqo dpo e '~q ~P/hNa(qo, PO, t) (41) 

By comparing Eqs. (37) and (39) we see that: 

@~.(q, p, t) = ~}~(q, p, t)*. (42) 

Hence, Eq. (38) may also be written: 

1 f f  . 
~ ( q ,  p, t) = ~ dqo dpo e ,Aq ~p/h~}g(qo ' Po, t) *. (43) 

Because the order of the indices i and j on the right-hand side of this equation 
is the reverse of that on the left-hand side, a relation of the type: 

~S(q,p, t) = ~ dqo dpo eiZqaP/~(qo,Po, t)* (44) 

cannot hold for arbitrary functions of the type (36). In fact, it can be true only 
when, in the notation of Eq. (36): 

C o ~  = Y', Z C u ~  (45) 
• i j 

i.e.: 

C/j ~,~ = ~ ~ Cu~*.  (46) 
• i j 
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This relation holds only for the following functions: 

t i(  ~# -- ~ji) 

J. P. Dahl 

(47) 

and real linear combinations of such functions. 
Thus we conclude that Eq. (6), proposed by Deal, is true for any state and 

for some, but not all, linear combinations of transitions. 
To proceed, we substitute Eq. (38) in the right-hand side of Eq. (35) and 

get: 

ih ~ ~ ( q ,  p, t) = ~ h  dqo dpo ~(qo ,  Po, t) exp ih 

--exp (iti ~-~l ~ ) )  Ha(q,p, t)ei(q-qo)(P-Po)/h. (48) 

Next, we note that: 

( ± ± t) exp \ Oq I Op2,,] Ha(q, p, 

e i(p-p°)(q-q°)/h f(qo ~qO ] H a exp _ - q) j~ (q, p, t) 

= Ha(qo, p, t) e i(q -qo)(P-Po)/h (49) 

and similarly: 

( ± ± ) t) e.q qo-- exp \ OPl 3qzJ Ha(q' p' = Ha(q, Po, t) el(q- qo)(p-po)/h. (50) 

Inserting the expressions (49) and (50) in Eq. (48) gives finally: 

ih -~ ~,~.(q, p, t) = ~ dqo dpo ~(qo ,  Po, t) 

x {Ha(qo,p, t) -Ha(q,  po, t)} e g(q-qo)(p-po)/h (51) 

or, in a notation similar to that of Eq. (3): 

1 f f  ih ~ ~ ( q ,  p, t) = ~ dqo dpo AH a e iAq aP/h~(qo, Po, t) (52) 

and, similarly for any function of the type of Eq. (36): 

1 f f  ih -~ ~(q ,  p, t) = ~ h  dqo dpo AHa eUq dP/h~a(qo, Po, t) (53) 

Equation (52) may also be written: 

~t 1 I f  ih ~ ( q ,  p, t) = ~ dqo dpo AH ~ eiAq JP/~}i(qO, Po, t)*. (54) 
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But the relation: 

l ff ih -~ ~'(q, p, t) = ~ dqo dpo AHa eiJq aP/h~(qo, Po, t)* (55) 

is only true for states and real linear combinations of functions of the type of Eq. 
(47). Equation (55) is seen to be identical with Eq. (7) proposed by Deal, 
provided that we identify his H(q, p, t) with Ha(q, p, t). 

Thus, we have arrived at Eqs. (41) and (53) as the proper generalizations of 
Deal's equations. They are entirely embedded in the standard phase-space 
formulation of quantum mechanics. 

For the sake of completeness we close this section by also listing the 
following equations which are similar to Eqs. (41) and (53) and may be derived 
along similar lines, starting from the standard representation: 

Na(q, p, t) = ~-~ dqo dpo e -i~q ~plhN~(qo, Po, t) (56) 

and 

_lff  
ih ~a(q, p, t) = ~ h  dqo dpo A H  s e-iAq AP/h~S(qo, Po, t). (57) 

4. Conclusions 

We have given an overview of the traditional phase-space formulation of 
quantum mechanics, including a table with comprehensive information concern- 
ing a few specific representations. On this background we have embedded a 
phase-space dynamics recently suggested by Deal in the traditional formalism. 
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